Kerstboombalfoto

Karel Knip

De kerstattributen hieronder zijn een schaalmodel van de Israëlische atoombom, zoals dat door de klokkenluider Mordechai Vanunu omstreeks 1985 werd gefotografeerd. Het is een implosiebom met plutonium als ‘pit’. Daarover straks.

Eerst bekijken we de prachtige kerstbal hiernaast. De moderne kerstballen kosten niets en zijn een wonder van perfectie. Volmaakt bolrond en voorzien van een coating die schitterend reflecteert. De kerstbal is niet meer weg te denken uit de kerstboom die zelf ook niet meer is weg te denken. En zoals dat geldt voor de boom, is niet eenvoudig na te gaan wanneer de kerstboombal in West-Europa werd geïntroduceerd. Op internet wordt de indruk gewekt dat de bal pas in 1847 zou zijn bedacht door een of andere Duitse glasblazer. Zomaar, opeens. Dat moet onzin zijn. Kerstbomen, waarin eeuwenlang alleen maar kaarsjes werden aangebracht, werden al rond 1800 volgehangen met snoep en snuisterijen, dus allicht ook met ballen.

Opvallend is dat de hier veel geciteerde prof. dr. M. Minnaert in het eerste deel van ‘De natuurkunde van ‘t vrije veld’, dat over licht en optica gaat, nergens de kerstbal ter sprake brengt. De optische eigenaardigheden van de kerstbal bespreekt hij aan de hand van de tuinbol. Hij deed dat al in de eerste druk van 1937. Misschien waren de ballen toen nog zeldzaam.

De kerstbal heeft veel optische eigenaardigheden. De kleinste eigenaardigheid is dat hij het oog van de waarnemer, of de lens van diens camera, altijd precies in het midden van de reflectie plaatst. Aan de hand van dit criterium ontmaskert men moeiteloos getrukeerde kerstboombalfoto’s.

Anders dan men geneigd is te denken weerkaatst de kerstbal niet de helft van de omgeving maar praktisch de hele omgeving (wel heeft hij daarvoor maar de helft van zijn oppervlak nodig). Wie vanaf grote afstand, desnoods met een toneelkijker, naar de bal kijkt ziet daarin bijna 100 procent van de omgeving weerkaatst. Niet alleen datgene wat zich achter zijn rug bevindt, maar ook dat wat achter de kerstbal ligt. Dat laatste onherkenbaar samengeperst aan de rand van de bal. Minnaert legt uit hoe dat komt.

Een nog elegantere verklaring is te vinden in het aantrekkelijke artikel ‘Reflections on an Chrismas-tree bauble’ dat de Britse fysicus M.V. Berry in 1972 publiceerde in Physics Education(te vinden via www.phy.bris.ac.uk). Het verloopt volgens basisregels van de geometrische optica, er komt geen tovenarij of hogere wiskunde aan te pas.

De schilder Jan van Eyck doorgrondde het waarschijnlijk al rond 1434 toen hij het portret van het echtpaar Arnolfini schilderde met de weerkaatsing van het stel in een halve bol.

Het beeld dat de kerstbal van zijn omgeving maakt is ‘oppervlakgetrouw’ (zoals Mercatorprojectie ‘hoekgetrouw’ is). Twee verschillende objecten die vanuit de bal precies even groot gezien worden, bedekken in de reflectie een even groot oppervlak, hoe verwrongen ook. Daarom is een reflecterende bol zo geschikt voor de observatie van wolken: elk stuk van de hemel wordt even helder afgebeeld,

De amateur construeert trouwens niet makkelijk het virtuele beeld dat de kerstbal van een object maakt. De regel die hij daarvoor op de middelbare school leerde (stralen evenwijdig aan de optische hoofdas weerkaatsen alsof ze uit het brandpunt komen) blijken alleen op te gaan voor heel kleine stukjes boloppervlak.

De waarnemer ziet een puntvormige lichtbron in de kerstbal lang niet altijd als een punt weerkaatst. Hoe donkerder het is hoe groter de kans dat hij een lichtend streepje ziet. Berry beschrijft een simpele proef waarmee dat valt aan te tonen. Doof alle lichten op één na en scherm dat laatste (een bureaulamp of een felle zaklantaarn) volledig af met aluminiumfolie waarin met een speld een klein gaatje is geprikt. Kijk in de kerstbal naar dat gaatje: het wordt een streepje. Doe vervolgens alle lichten weer aan, dan verandert de streep in een punt. Het is te danken aan de pupil van het oog die zich op dat moment weer vernauwd heeft. Toen hij in het donker helemaal openstond bedierf hij de beeldvorming. Of liever gezegd: de beeldontvangst.

Nu naar de plutoniumbom. De opdracht is te schatten hoe groot de bruingrauwe plutoniumpit is die vooraan ligt. Volgens de literatuur weegt hij 4 à 5 kilo en dat betekent dat de diameter ongeveer 7,5 cm moet zijn, want de dichtheid van plutonium is 19,8 g/cm3. Maar als het een vel A4-papier is dat naast de pit ligt (en waarvan men de korte zijde ziet, de foto is een uitsnede), dan komt dat niet uit. Dan zou de pit nog geen 5 cm breed zijn.

Is er geknoeid met deze foto? Buiten de bomonderdelen is hij vreemd vaag. Het is duidelijk dat er niet geflitst is toen er werd afgedrukt en dan zal de lens wel flink ver hebben opengestaan. Als dat zo is dan moet daar in die glimmende halfopen bol achteraan (de reflector) iets van te zien zijn. Punten als strepen, dat idee. Ook moet precies in het hart van de reflector de cameralens van de fotograaf staan. Maar er staat niets. Is dit wel kosher?